Acute effects of the sigma-2 receptor agonist siramesine on lysosomal and extra-lysosomal proteolytic systems in lens epithelial cells

نویسندگان

  • S. Jonhede
  • A. Petersen
  • M. Zetterberg
  • J-O. Karlsson
چکیده

PURPOSE The aim of the present study was to examine the effects of the sigma-2 receptor agonist, siramesine, on morphology, growth, cell death, lysosomal function, and effects on extra-lysosomal proteolytic systems in human lens epithelial cells. METHODS Human lens epithelial cells in culture were exposed to siramesine and examined for morphological changes using Nomarski optics or calcein. Lysosomes were evaluated using acridine orange and Magic Red (RR-cresyl violet). Nuclear morphology was studied using Hoechst 33342 and propidium iodide. Enzymatic activities in living cells or cell lysates were studied using fluorogenic substrates. RESULTS Siramesine at low concentrations increased the cytoplasmic proteolytic activity of the proteasome and the calpain system. Effects were also observed with respect to lysosomal morphology, acidity and function. In addition, activation of caspase-3 and the appearance of nuclei with an apoptotic morphology was found. CONCLUSIONS Siramesine at low concentrations affects lens epithelial cells with perturbations of the major proteolytic systems and lysosomal morphology, resulting in caspase activation and cell death. Siramesine may be a possible substance for the treatment or prevention of posterior capsular opacification (PCO).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine.

Vincristine is a microtubule-destabilizing antimitotic drug that has been used in cancer therapy for over 40 years. However, the knowledge on vincristine-induced cell death pathways is still sparse. Here, we show that vincristine induces dramatic changes in the lysosomal compartment and sensitizes cells to lysosomal membrane permeabilization. In HeLa cervix carcinoma cells, vincristine induced ...

متن کامل

Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress.

Acquired resistance to classic caspase-mediated apoptosis is a common problem for the treatment of human cancer. Here, we show that siramesine, a novel sigma-2 receptor ligand, effectively induces caspase-independent programmed cell death in immortalized and transformed cells of various origins. Siramesine-treated tumor cells displayed increased levels of reactive oxygen species, lysosomal memb...

متن کامل

The Sigma-2 Receptor Selective Agonist Siramesine (Lu 28-179) Decreases Cocaine-Reinforced Pavlovian Learning and Alters Glutamatergic and Dopaminergic Input to the Striatum

Drug addiction is a chronic, debilitating disease that affects millions of people around the world causing a substantial societal burden. Despite decades of research efforts, treatment possibilities remain limited and relapse represents the most treatment-resistant element. Neurosteroid sigma-1 receptors have been meticulously studied in psychostimulant reinforced Pavlovian learning, while the ...

متن کامل

Identification of Cytoskeleton-Associated Proteins Essential for Lysosomal Stability and Survival of Human Cancer Cells

Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25),...

متن کامل

Effective Tumor Cell Death by S-2 Receptor Ligand Siramesine Involves Lysosomal Leakage and Oxidative Stress

Acquired resistance to classic caspase-mediated apoptosis is a common problem for the treatment of human cancer. Here, we show that siramesine, a novel S-2 receptor ligand, effectively induces caspase-independent programmed cell death in immortalized and transformed cells of various origins. Siramesine-treated tumor cells displayed increased levels of reactive oxygen species, lysosomal membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2010